April 1st, 2018

promo luckyea77 december 30, 15:00 8
Buy for 10 tokens
По этой ссылке (или этой) можно скачать информационную базу для программы "1С:Предприятие". С помощью данной базы можно готовиться и сдавать экзамены по темам: - Электробезопасность - Основы промышленной безопасности А.1 - Специальные требования промышленной безопасности: Б 9.31.…

Ученые обещают прототип квантовой батареи через три года



Итальянские физики предложили новую концепцию квантовой батареи на запутанных кубитах, которую можно реализовать на базе существующих технологий. Они надеются создать экспериментальный образец с пятью кубитами в течение трех лет. Статья с результатами опубликована в журнале Physical Review Letters.

Несколько лет назад физики предложили теоретическую идею квантовой батареи, которая будет хранить энергию не в виде химических соединений, а благодаря возбужденным состояниям квантовых объектов. Большинство из этих работ написали ученые, занимающиеся исследованиями по квантовой теории информации, которые интересуются фундаментальными теоремами о предельных уровнях хранения энергии и ее передачи. В новой работе физики предложили схему, которую можно реализовать на практике.

Итальянские физики предложили использовать в качестве кубитов сверхпроводниковые контуры или полупроводниковые квантовые точки. В рассмотренном авторами простейшем варианте они должны обладать двумя энергетическими уровнями — основным и возбужденным. Все кубиты помещаются в общий оптический резонатор, где их можно одновременно перевести в возбужденное состояние и запутать одним воздействием, например, лазерным импульсом определенной энергии. В результате, по подсчетам ученых, мощность, с которой можно заряжать батарею, увеличивается пропорционально квадратному корню из кубитов. В то же время для батареи из массива кубитов в отдельных резонаторах эта величина не изменяется при добавлении новых элементов.

Авторы отмечают, что предложенная система не нарушает никаких термодинамических законов, так как в ней используется более интенсивный поток энергии от источника к батарее, чем допустим для других устройств. Также физики отмечают, что подобные устройства не станут заменой современных аккумуляторов. Несмотря на близкую к теоретической скорость зарядки, они также будут разряжаться экстремально быстро — на масштабе наносекунд. Кроме того, по сравнению с химическими элементами у них крохотная емкость: типичная разница энергий между уровнями кубита составляет 0,001 электронвольта, в то время как современные аккумуляторы ноутбуков хранят около 1024 эВ. Поэтому основным полем применения подобных батарей может стать сфера квантовых вычислений. В этом случае батарея, находящаяся внутри квантового компьютера, будет работать в цикле: каждый кубит будет заряжаться, пока компьютер забирает энергию у следующего для проведения вычислений.

Ученые хотят выяснить, являемся ли мы квантовыми компьютерами



Есть гипотеза, точнее множество гипотез, согласно которым наш мозг представляет собой не что иное, как биохимический квантовый компьютер. В основе этих идей лежит предположение о том, что сознание необъяснимо на уровне классической механики и может быть объяснено только с привлечением постулатов квантовой механики, явлений суперпозиции, квантовой запутанности и других. Ученые из Калифорнийского университета в Санта-Барбаре через серию экспериментов решили выяснить — действительно ли наш мозг является квантовым компьютером.

На первый взгляд может показаться, что компьютер и мозг работают одинаково – оба обрабатывают информацию, могут ее сохранять, принимают решения, а также имеют дело с интерфейсами ввода и вывода. В случае мозга этими интерфейсами выступают наши органы чувств, а также способность управлять различными объектами, не являющимися частью нашего тела, например, искусственными протезами.

Мы многого не знаем о том, как работает наш мозг. Но есть люди, которые считают, что многообразие процессов работы нашего мозга, которое невозможно объяснить с точки зрения классической механики, можно объяснить с позиции квантовой механики. Другими словами, они уверены, что такие аспекты квантовой механики, как квантовая запутанность, явление суперпозиции и все остальные вещи, на основе которых работает квантовая физика, на самом деле могут управлять процессами работы нашего мозга. Разумеется, не все согласны с такой формулировкой, но так или иначе ученые решили это проверить.
Collapse )

Экзоскелет сделает лыжников выносливее



Американский стартап Roam Robotics показал прототип экзоскелета для лыжников. Конструкция крепится на ноги и берет часть веса спортсмена на себя, снижая напряжение в мышцах и отдачу при прыжке. О новинке сообщает The Verge.

В основном экзоскелеты используют либо для реабилитации работы конечностей, либо на производстве: например, для облегчения работы грузчиков или для уменьшения количества профессиональных травм. Стоимость экзоскелетов, однако, не всегда позволяет использовать их любителям: например, для работы по дому или занятий спортом. Компания Roam Robotics намерена это исправить, их новый проект призван облегчить и улучшить катание на горных лыжах не только профессиональным спортсменам, но и любителям.

Новый экзоскелет состоит из рюкзака с блоком питания и двумя крепящимися на ноги конструкциями, работающими с помощью мягких пневматических актуаторов. При сгибании колен актуатор наполняется воздухом, и устройство, таким образом, работает в качестве амортизатора, смягчая напряжение в мышцах. Его использование позволит лыжникам кататься дольше и быстрее, при этом затрачивая на это меньше физических усилий.
Collapse )

Нейросеть научили понимать суть физических процессов в статистических системах


Проверка работы нейросети (ее данные приведены в розовом квадрате) на модели мозаики домино

Физики разработали новый алгоритм машинного обучения, который с помощью анализа состояний статистической системы на макроскопическом и микроскопическом уровнях находит те степени свободы, которые определяют ее физические свойства. Этот алгоритм, основанный на использовании метода ренормализационной группы, был успешно проверен на двух двумерных статистических моделях, пишут ученые в Nature Physics.

Среди многочисленных технологических и научных задач, для решения которых сейчас используется машинное обучение, в последнее время появились и некоторые физические проблемы: например фазовый анализ или численное моделирование основных энергетических состояний. Часто с помощью методов машинного обучения проводится анализ большого объема экспериментальных данных. Например, недавно физики использовали один из таких методов для решения задачи минимизации энергии в модели Изинга и поиска среди данных, полученных на Большом адронном коллайдере, редких событий образования и распада бозона Хиггса.

Но если метод поиска конкретной особенности среди известных данных (пусть и не самой простой по своей структуре) — задача для искусственных нейросетей довольно понятная, то намного сложнее, ничего не зная заранее о физической системе, состоящей из большого количества частиц, найти в ней те параметры и свойства, которые отвечают за ее физическое поведение. Системы, которые внешне (на макроскопическом уровне) ведут себя очень похожим образом, на микроскопическом уровне могут очень сильно отличаться. И понять, какими процессами на каком из масштабов контролируются, например, электронные или магнитные свойства сложных многоатомных кристаллов может быть непросто.
Collapse )

Вчера наступило завтра



Как Альберт Эйнштейн боролся за европейский мир и теоретическую физику

В самом начале ХХ века в физике произошли колоссальные открытия, ряд которых принадлежал Альберту Эйнштейну, создателю общей теории относительности. Ученые оказались на пороге совершенно нового взгляда на Вселенную, который требовал от них интеллектуальной смелости, готовности погрузиться в теорию и навыков в обращении со сложным математическим аппаратом. Вызов приняли не все, и, как это порой бывает, на научные споры наложились политические разногласия, вызванные сперва Первой мировой войной, потом — приходом к власти в Германии Гитлера. Эйнштейн и тут оказался ключевой фигурой, вокруг которой ломались копья. Читайте об этом в новом материале из серии «Физика ХХ века».

Эйнштейн против всех

Начало Первой мировой войны сопровождалось патриотическим подъемом у населения государств-участников, в том числе у ученых.

В Германии в 1914 году 93 деятеля науки и культуры, включая Макса Планка, Фрица Габера и Вильгельма Рентгена, опубликовали манифест, выражающий полную поддержку государству и войне, которую оно ведет: «Мы, представители немецкой науки и искусства, заявляем перед всем культурным миром протест против лжи и клеветы, которыми наши враги стараются загрязнить правое дело Германии в навязанной ей тяжкой борьбе за существование. <…> Без немецкого милитаризма немецкая культура была бы давным-давно уничтожена в самом зачатке. Германский милитаризм является производным германской культуры, и он родился в стране, которая, как ни одна другая страна в мире, подвергалась в течение столетий разбойничьим набегам».
Collapse )