December 10th, 2020

Существует ли объективная реальность?

Что такое реальность? И кто может дать ответ на этот вопрос? В прошлом году ученые из Университета Хериота-Уатта в Шотландии проверили интересный эксперимент, результаты которого предполагают, что объективной реальности может не существовать. Несмотря на то, что когда-то эта идея была просто теорией, теперь исследователи смогли перенести ее в стены университетской лаборатории, а значит проверить. Так как в квантовом мире измерения с разных позиций дают различные результаты, но при этом одинаково верны, проведенный эксперимент показал, что в мире квантовой физики два человека могут наблюдать одно и то же событие и разные результаты; при этом ни одно из этих двух событий не может быть воспринято как неправильное. Иными словами, если два человека видят две разные реальности, то договориться какая из них правильная они не смогут. Этот парадокс известен как «парадокс друга Вигнера» и теперь ученые экспериментально его доказали.


Ученые не оставляют попыток ответить на вопрос о том, что такое реальность.

Квантовая механика – это раздел теоретической физики, который описывает основные свойства и поведение атомов, ионов, молекул, электронов, фотонов, конденсированных сред, а также других элементарных частиц.

Парадокс друга Вигнера

В 1961 году лауреат Нобелевской премии по физике Юджин Вигнер всерьез задался вопросом о том, чем же является объективная реальность. Ученый предложил один из самых странных экспериментов в квантовой механике, который включал идею о том, что два человека могут наблюдать две разные реальности и ни один из них технически не будет ошибаться. Но как?

В ходе мысленного эксперимента, который и получил название «парадокс друга Вигнера», два ученых в лаборатории изучают фотон – наименьшую количественную единицу света. Примечательно, что этот поляризованный фотон при измерении может иметь либо горизонтальную поляризацию, либо вертикальную. Но до измерения, согласно законам квантовой механики, фотон существует в обоих поляризационных состояниях одновременно – в так называемой суперпозиции.
Collapse )
promo luckyea77 декабрь 30, 15:00 8
Buy for 10 tokens
По этой ссылке (или этой) можно скачать информационную базу для программы "1С:Предприятие". С помощью данной базы можно готовиться и сдавать экзамены по темам: - Электробезопасность - Основы промышленной безопасности А.1 - Специальные требования промышленной безопасности: Б 9.31.…

Существуют ли путешествия во времени без парадоксов?

Физика не может полностью исключить возможность путешествий во времени. Как общая, так и специальная теория относительности Альберта Эйнштейна показывают, что время относительно, так что ОТО открыта для возможности временных махинаций. Но если бы вы могли запрыгнуть в машину времени и отправиться в прошлое, стоило бы беспокоиться о создании парадоксов, меняющих ход истории? Как, например, в знаменитом рассказе Рэя Брэдберри «И грянул гром», главный герой которого наступил на бабочку во время своего путешествия, тем самым изменив собственный мир до неузнаваемости. Согласно результатам исследования, проведенного студентом Квинслендского университета и его научным руководителем, математические расчеты показывают, что путешествия во времени возможны без парадоксов – Вселенная все уладит.


С точки зрения физики путешествия назад во времени возможны.

Парадоксы путешествий во времени

Классический мысленный эксперимент о путешествии во времени называется парадокс дедушки. Представьте, что вы решили вернуться в прошлое, чтобы убить своего деда. Попав туда вы убиваете его прежде, чем он познакомится с вашей бабушкой. И как вам тогда существовать, чтобы отправиться в прошлое и убить его? А если вас не существует, то кто в таком случае вернулся назад во времени и убил деда? Парадокс. Временная шкала больше не является самосогласованной.

Примечательно, что парадокс дедушки можно применить к самым разным историям о путешественниках во времени. В «Назад в будущее» Марти отправляется назад во времени, вмешивается в отношения своих родителей, флиртуя со своей мамой, не давая себе родиться. Но если Марти никогда не рождался, то как он смог вмешаться в интрижки своих родителей? Но если он не может вмешаться, то что мешает ему родиться? И так по кругу. Если бы не одно «но» – некоторые решения уравнений Эйнштейна позволяют путешествовать во времени по замкнутым временным кривым.
Collapse )

Как ученые предсказывают будущие события

Можно ли предсказать будущее? Этим вопросом представители нашего вида задаются на протяжении истории. В попытках «обуздать судьбу» люди чего только не делают – гадают на картах, кофейной гуще, придумывают разнообразные значения линиям на руке, обращаются за помощью к так называемым провидцам и экстрасенсам, составляют гороскопы – в общем, в ход идет абсолютно все, что хоть мало-мальски способно предсказать будущие события. Вот только все вышеописанные способы не имеют совершенно никакого отношения к науке и в лучшем случае используются в качестве развлечения. Между тем, современная наука продвинулась далеко вперед в прогнозировании будущих событий – так, на основе имеющихся данных климатологи с помощью компьютерного моделирования создают модели, предсказывающие как изменятся погодные условия на Земле через 20-30 лет. Эти модели, однако, не отвечают на вопрос о том, что ждет завтра именно вас, а потому широкую общественность, как правило, практически не интересуют. А зря, так как сегодня с помощью науки мы действительно можем заглянуть в будущее.


Сегодня ученые могут предсказать как будут развиваться события в мире в ближайшие десятилетия. И никакой магии.

Научный метод – система регулятивных принципов, приемов и способов, с помощью которых можно достигнуть объективного познания окружающей действительности.

Как наука предсказывает будущее?

Современное развитие технологий позволяет ученым быть самыми настоящими предсказателями, способными ответить на вопросы о том, где окажется человечество через пару сотен лет, что произойдет с окружающей средой и даже нашей Вселенной. Так, большинство ученых используют предсказания в своих исследованиях применяя научный метод – генерируя гипотезы и предсказывая, что произойдет. Эти предсказания могут иметь самые разные последствия и направлять развитие целых научных дисциплин, как это было в случае с теорией относительности Эйнштейна и теорией эволюции Дарвина, которые на протяжении многих лет лежали в основе исследований в области физики и биологии.

Сегодня научный метод все чаще используется учеными для предсказаний и прогнозирования будущих событий. Во многом это связано с экспоненциальным ростом вычислительных мощностей, что позволяет постепенно создавать более детальные и точные модели, способные предсказать стихийные бедствия, например землетрясения и цунами.
Collapse )

Сколько материи во Вселенной на самом деле?

Из чего состоит Вселенная? Ответ на этот вопрос ученые ищут на протяжении десятилетий, но лишь недавно им удалось немного приблизиться к разгадке. Как это ни странно, но 2020 год оказался богат на научные открытия – так, в сентябре астрофизики обнаружили что материя составляет около 31% от общего количества материи и энергии в нашей Вселенной. Остальные же 69%, по мнению ученых, составляет темная энергия – таинственная сила, которая, как считается, ответственна за ускоряющееся расширение Вселенной. Следом, в ноябре, в свет вышла работа команды исследователей из Национального центра научных исследований Франции (CNRS), согласно которой 40% видимой материи во Вселенной (о существовании которой раньше мы не знали) скрыто в диффузных нитях гигантской, соединяющей галактики космической паутины. Рассказываем, что известно современной науке о составе Вселенной.


Французские исследователи предполагают, что так как нити космической паутины рассеяны, а сигналы, которые они испускают, слабы, 40% материи Вселенной оставалось незамеченным на протяжении 20 лет.

Барионы – частицы, состоящие из трех кварков, таких как протоны и нейтроны. Они составляют атомы и молекулы, а также все структуры, которые можно увидеть в наблюдаемой Вселенной (звезды, галактики, скопления галактик и т. д.).

Из чего состоит наша Вселенная?

Считается, что Вселенная состоит из трех типов вещества: нормальной материи, «темной материи» и «темной энергии». Нормальная материя состоит из атомов, из них же состоят звезды, планеты, люди и все другие видимые объекты в нашей Вселенной. Как ни унизительно это звучит, но нормальная материя почти наверняка составляет наименьшую долю Вселенной, где-то между 1% и 10%. Согласно популярной в настоящее время модели Вселенной 70% материи приходится на темную энергию, 25% – на темную материю и 5% – на нормальную материю.

Однако результаты нового исследования, опубликованного в журнале Astronomy & Astrophysics предполагают, что около 40% всей видимой материи Вселенной – той, что составляет все что мы можем видеть и осязать – обнаружено впервые. Команда ученых из Национального центра научных исследований Франции (CNRS) считает, что наконец-то обнаружила ее – скрытую в галактических нитях космической паутины.
Collapse )

В Китае создан квантовый компьютер, который решил самую сложную задачу за 200 секунд

Китайские ученые разработали квантовый компьютер, который смог решить одну из самых сложных задач за 200 секунд. Даже самый мощный классический компьютер потратил бы на вычисление около 2,5 миллиарда лет. Явление, при котором квантовый компьютер оказывается гораздо мощнее обычного, принято называть квантовым преимуществом. Впервые о достижении квантового преимущества в 2019 году объявила компания Google, но их успех был подвержен критике. В рамках этой статьи предлагаю вам вкратце разобраться, что такое квантовый компьютер, какую именно задачу он смог решить и каким образом. И значит ли это, что в скором будущем наши домашние компьютеры станут в тысячи раз мощнее?


Изобретение квантового компьютера может изменить жизнь человечества

Что такое квантовый компьютер?

Если говорить коротко, в классических компьютерах для хранения информации используются биты. А в квантовых компьютерах для этого используются так называемые кубиты, которые вмещают в себя гораздо больше данных. Именно поэтому считается, что квантовые компьютеры потенциально гораздо мощнее, чем классические. Только вот на данный момент ученые не умеют управлять большим количеством кубитов и в квантовых компьютерах их насчитывается всего лишь несколько десятков. А вот в обычных компьютерах количество оперативной памяти составляет несколько гигабайт, то есть десятки миллиардов (!) битов.
Collapse )