luckyea77 (luckyea77) wrote,
luckyea77
luckyea77

Роман Нестер, Segmento: я верю корпорациям больше, чем маленьким компаниям



Роман Нестер — сооснователь и генеральный директор Segmento, платформы, таргетирующей рекламу на основе офлайн- и онлайн-данных. Нестер является экспертом по data-driven-маркетингу и digital-стратегиям, консультирует Сбербанк в области цифрового маркетинга, технологических инвестиций и работы с ИИ и big data. «Хайтек» поговорил с Романом Нестером о персонализации рекламы, работе со Сбербанком и МТС, а также — об использовании персональных данных крупными корпорациями и будущем рекламы на телевидении.

Машинное обучение и онлайн-реклама


— Как работает Segmento и программатик?

— Технологически это система, которая делает баннеры и видео в интернете на 2 млн сайтов таргетированными и персональными. В тот момент, когда вы заходите на сайт или открываете приложение, пока у вас на экране что-то загружается, срабатывает система. Она успевает провести колоссальное количество операций — оценить вас, все ваши признаки, параметры, предсказать, насколько вы ценны для рекламодателя. Выбрать, какому рекламодателю лучше отдать показ, конкурировать с другими 40 роботами на аукционе и после этого показать рекламу. И все это — за шесть сотых секунды. Это та же скорость, с которой моргает человеческий глаз.

Главная особенность Segmento: мы сделали машинное обучение реально эффективным для онлайн-рекламы. Удалось построить систему, которая очень круто таргетирует, оптимизирует рекламные компании.

— Как вы используете машинное обучение?

— Система автоматически обучается после каждого взаимодействия с пользователем, который смотрит рекламу. Для пользователя запоминается около 2 тыс. параметров: как он вел себя в офлайне, на какую рекламу когда и как реагировал, в какое время. Это улучшает рекламную кампанию с каждым новым кликом пользователя на баннер или с каждым досмотром видео. Каждая сотня кликов позволяет модели перестроиться и сделать показы еще точнее. Раньше такого не было: эта модель постоянно учится, моментально запуская в работу накопленные знания и делая рекламную кампанию эффективнее. Система анализирует пользователя, показывает ему рекламу, а потом учитывает то, что произошло после показа, — и снова все взвешивает. Это порядка 80 тыс. решений каждую секунду. И все эти решения — новая почва для обучения.

— В будущем у каждого будет индивидуальная реклама?

— Она, в общем-то, и сейчас индивидуальная, но это сложно заметить, ведь в каждом рекламном аукционе участвуют 40 роботов. Некоторые из них умные, некоторые глупые. Некоторые про вас знают, некоторые не знают ничего. И если наша система решит, что сейчас рекламу показать неэффективно, какой-то глупый робот может решить обратное. И вы увидите рекламу, которая покажется вообще не подходящей. Поэтому потребителю довольно сложно заметить, что машинное обучение сделало огромный шаг вперед.



— Когда-нибудь это будет заметно?

— Думаю, это точно будет становиться заметнее. Персональным станет все — не только баннеры, видеореклама, но и сами сайты. Мы, например, научили сайт Сбербанка узнавать вас в момент, когда вы заходите. Он анализирует и загружается в нужном формате. Сейчас там персонализируются отдельные блоки, которые не предлагают то, что не нужно. Затем пользователи будут видеть разный дизайн, интерфейс и даже цвета. Каждой компании сегодня хочется быть более персональной: предсказывать потребности и в нужный момент предлагать продукт. Это приведет к прикольной «гонке вооружений», в которой всем будет важно максимально инвестировать в точность своих предсказаний.

Цифровой агент и будущее рекламы

— Раньше вы говорили, что не любите термин «искусственный интеллект» и предпочитаете ему «машинное обучение». Верите ли вообще в ИИ, появится ли он в рекламе и изменит ли индустрию?

— Чисто технически есть два подхода. Есть General AI — самообучающаяся система, способная решать бесконечно вариативные задачи без поддержки человека. Это интересная концепция — речь идет о сингулярности, развитии ИИ с бешеной скоростью и опережении человека. И когда-нибудь этот момент настанет, но сейчас мы весьма далеки. Возможно, это случится даже не при моей жизни. Раньше я считал по-другому.

Второе — конкретные вертикальные ИИ, системы, которая в своей нише хорошо решает задачи. Они строятся на нейронных сетях, машинном обучении, то есть на системах, способных улучшаться автоматически и автоматизировано решать задачи. Они сделают нашу жизнь лучше. Сейчас будущее — за теми людьми, которые применяют наработки машинного обучения, чтобы решить какую-то конкретную боль в жизни человека. Я хочу, чтобы мои боли решали, и чем технологичнее, тем лучше.

Сейчас креативность — непредсказуемая вещь. Если топ-менеджеру понравилась картинка, которую принесло креативное агентство — вообще не факт, что на самом деле это сработает. На фестивалях рекламы мы смотрим на единичные случаи, когда это сработало. Это уйдет в прошлое. Все станет очень прогнозируемым — любые креативные идеи можно будет по щелчку пальца запустить на аудиторию в 30 человек. Быстро получить обратную связь, что-то скорректировать — и создать практически идеально работающий материал.

«Я бы больше спрашивал про это разные медиа, которые люди с Adblock просто обрекают на смерть. Людям почему-то очень нравится получать хороший контент бесплатно».

— Adblock и другие похожие инструменты стали проблемой для рекламодателей. Со временем реклама будет становиться лучше, но технологии блокировки тоже. Насколько это проблема — сейчас и в перспективе?

— Это не проблема, потому что мы как система работаем с десятками миллионов пользователей. И где-то 10-15% в России ставят себе Adblock. Ну, не покажем ему рекламу. Система довольно быстро увидит, что он не кликает, и просто исключит из аудитории показов. Я встречал исследования, говорящие о том, что из реально платежеспособных, нужных рекламодателю пользователей Adblock ставит один из 15 или даже из 20. С точки зрения бизнеса рекламных платформ, колоссально это ничего не меняет.

«Количество данных — абсолютно бессмысленная метрика»

— На основе каких данных система оценивает пользователя?

— Человек обычно проводит время в сети так: 2% времени что-то ищет, 30% — сидит в соцсетях, а оставшееся время — что-то читает, ходит по разным сайтам. В среднем человек посещает до 60–70 сайтов в день. И след посещенных сайтов — про что они, частота этих посещений, как часто человек на них возвращается — крайне важная часть профиля. Она очень точно описывает — на мой взгляд, гораздо точнее, чем соцсети, — интересы человека в данный момент. На основе этого можно понять, что ему лучше показать, как сделать, чтобы в нужный момент он предпочел тест-драйв нового внедорожника Toyota тест-драйву внедорожника УАЗ. Потому что в правильное время нужному человеку была показана реклама этих компаний.



— Для скоринга берете все возможные данные — из онлайна и офлайна?

— Да, причем в какие-то моменты времени онлайн-данные оказываются гораздо ценнее, чем данные из офлайна о покупках и посещениях конкретных торговых точек. Мы первыми в России — и, возможно, даже первыми в Европе — сделали технологию, которая соединяет знания крупного офлайн-бизнеса с онлайн-поведением пользователя. Эту технологию мы придумывали сами, сделали с нуля. И гигантское количество сил потратили на то, чтобы данные загружались в нашу систему в агрегированном, зашифрованном виде, понятном только алгоритмам машинного обучения, что делает их использование полностью безопасным для клиентов и эффективным для рекламодателей.

— Лидеры глобального рынка рекламы сейчас — Facebook и Google. Конкурируете ли с ними, есть ли в принципе такая возможность? Даже если у вас будут все российские банки с телекомом, — не будет такого количества данных.

— Facebook — мощнейшая компания, у нее есть данные. Но не знаю ни об одном случае, чтобы она целиком закрывала все задачи рекламодателя. Ни здесь, ни на Западе. Конкуренция за рекламодателя есть всегда, и мы однозначно конкурируем с Google и Facebook.



Количество данных — абсолютно бессмысленная метрика, в ней нет никакого значения. Есть очень сильно разогретые ожидания по поводу того, что сбор любых данных может сделать что-то эффективнее. Очень многие данные бизнесу, а конкретно рекламе и маркетингу, не дадут ничего. Например, просто знания о половой принадлежности и возрасте в гигантских количествах уже неэффективны. Рекламодатель же хочет получать конкретное повышение продаж, изменение поведения потребителей.

Ключевые навыки digital-специалиста:

* понимание, из каких предпосылок нужно выбрать необходимую аудиторию;
* умение с помощью машин и алгоритмов управлять рекламной кампанией и оптимизировать ее;
* умение работать с рекламодателем.


У нас великолепное положение относительно других компаний: находимся на российском рынке, он для большого количества западных компаний сложен или недостаточно велик. Из-за сложности им нужно инвестировать много ресурсов, то есть подключать локальный инвентарь, работать с местными данными. Но это очень дорого для таких гигантских и неповоротливых компаний, как Google.

Здесь от Facebook и Google все рекламодатели будут получать коробочный продукт: есть четыре кнопки, на которые нужно нажимать, и надеяться, что произойдет что-то хорошее. Если хорошее не произошло, дальше можно взывать к небу, но Facebook и Google не будут тратить время на вас. Мы можем для каждого рекламодателя быть на голову лучше. С точки зрения прямой эффективности — сколько покупок рекламодатель в результате получит — мы еще три-четыре года назад в баннерной рекламе давали результаты лучше, чем эти гиганты.

Личные данные и большие корпорации

— Говоря о кейсе Cambridge Analytica: пытались ли когда-либо получать данные из Facebook, если это было так просто?

— Я не считаю ценными данные из социальных сетей. Это лишь один из видов данных, и из моей практики, для решения бизнес-задач они не всегда эффективны. И потом, Cambridge Analytica действует на узком рынке политики. Насколько мне известно, у них на один громкий кейс, который вроде успешный, приходятся штук десять провальных. Мы политической рекламой не занимаемся, потому что чаще всего там таргетинг и все остальное не особо полезны.



Считаю, что в долгосрочной перспективе социальные сети включатся в гонку за данными по-настоящему ценными — и здесь мы в равных условиях. То есть они займутся поиском данных о том, как люди ведут себя в офлайне, будут собирать что-то еще из поведения пользователей.

— Как относитесь к тому, что корпорации хотят знать так много о клиентах?

— В корпорациях всегда были аналитические подразделения, и десять лет назад, и 20. До всякого машинного обучения они точно так же стремились как можно больше информации про вас получить. Например, скоринговые (рисковые) подразделения в банках — в этом нет ничего нового. Просто сейчас люди стали об этом задумываться в свете хайпа про большие данные.

«Скажу парадоксальную вещь: я верю корпорациям больше, чем маленьким компаниям. Потому что для корпорации очень дорого упустить утечку данных. В отличие от небольшой компании, которая готова эти данные продать кому угодно. Меня больше пугает возможность, что мои данные пойдут куда-то гулять, чем то, что сама корпорация обо мне что-то собирает. Если она что-то собирает, то должна в ответ давать сервис»

У меня нет проблем с тем, что Facebook анализирует с головы до пяток. Я получаю офигительный сервис. Я получаю суперсервис от Google, он в любой момент может помочь мне в жизни. Я могу в любой момент времени от этого отказаться. Но тогда, наверное, буду уже неконкурентен — как человек, как мужчина, как сотрудник.

Также люди склонны переоценивать, что социальные сети про них знают. Что, в конце концов, в этом такого? Государственные органы знают про вас гораздо больше. Задумывались ли о том, как там хранятся ваши данные? Куда они попадают, насколько они защищены? Наверное, нет. Вот это меня волнует больше, чем то, как коммерческие компании анализируют какой-то кусочек данных про меня и используют для того, чтобы свои сервисы сделать лучше.

«Контроль в стартапе — вещь аморфная»

— Сбербанк в какой-то момент был вашим основным инвестором, и вы до сих пор используете их данные. Сейчас 50% компании принадлежит Сбербанку, 50% — венчурному фонду Sistema_VC. Как нашли этого инвестора?

— Этот фонд — наш стратегический партнер. Основной инвестор этого фонда — АФК «Система», она же основной акционер МТС. Одна из наших задач — построить продукт, объединяющий данные МТС и онлайн-поведение пользователя. Мы этим сейчас и занимаемся. При этом Sistema_VC — это deep tech фонд, который вообще инвестирует в самые прорывные направления: в искусственный интеллект, в применение больших данных. И именно этот фонд стал инвестором в это новое начинание. Фактически из проекта, который делал только Сбербанк, эта история стал joint venture — совместным

— У вас сейчас вообще есть доля в компании?

— Не хотел бы отвечать на этот вопрос.

— Если верить справкам ЕГРЮЛ, у вас ее нет. 50% — у Сбербанка, 50% — у «Системы».

— Если бы вы пять лет назад посмотрели, то же самое увидели. Сделки структурируются по-разному, в разных юрисдикциях, так что это ни о чем не говорит.



— В одном интервью вы говорили, что была не самая типичная для стартапа ситуация «экзита» — когда основателям не принадлежит контрольный пакет. Почему отказались от контрольного пакета и посчитали, что можете развивать компанию без него?

— У стартапа всегда есть свой путь. Либо делать что-то исключительно самостоятельно — не вступая в партнерства, без каких-то сильных ресурсов на стороне. Либо подумать: на каких условиях ты готов стать гораздо крупнее, чем ты бы мог это сделать самостоятельно. Но нужно искать какие-то компромиссы. Вообще контроль в стартапе — вещь весьма аморфная. Даже стартапы, в которых основателю принадлежит 60–70%, на самом деле жестко контролируются фондом. Как только появляются сторонние деньги на борту, у тебя уже нет контроля. Попытки что-то совсем контролировать приведут к тому, что будешь спорить с акционерами вместо того, чтобы заниматься стартапом. Сторонние деньги у нас появились еще в 2012-м, потом еще раунд, еще раунд. С этого момента учились работать с партнерами. А Сбербанк стал таким инвестором, который принес не только деньги, а что-то гораздо более важное — возможность создать уникальный для рынка продукт.

— Кто ваши основные клиенты и сколько их всего?

— Сегодня система в основном решает задачи крупного бизнеса. Нашим рынком называем топ-1000 рекламодателей в России с бюджетом на маркетинг в районе 60–100 млн рублей в год. И чаще всего наши рекламодатели — это крупные автобренды, фармпроизводители, крупные потребительские компании. С кем мы практически не работаем, — это малый и средний бизнес. Им обычно хватает самого базового инструмента — поисковой рекламы. За прошлый год у нас было больше 300 клиентов, большинство из которых сейчас остаются для новых рекламных кампаний.

— Данные по выручке?

— Нас оценили два независимых аудитора, Deloitte и PricewaterhouseCoopers, и компания сейчас стоит в четыре раза больше, чем при покупке Сбербанком в 2015 году. Скорее всего, она является самой дорогой из независимых программатик-компаний на российском рынке. Это десятки миллионов долларов.



Если оценить выручку, то с 2015 года мы выросли почти в шесть раз, а по итогу этого года ожидаем, что мы вырастем почти в десять раз. При этом доля Сбербанка (как клиента) — никогда не превышала 20–25%. Принято считать, что мы — компания, которая очень тесно работает со Сбербанком. Он для нас очень любимый, но только один из этих трех сотен клиентов. На него трудится отдельная команда, делаем вместе потрясающе интересные пилоты.

Нейросети и будущее ТВ-рекламы

— Когда вы создавали компанию, на рынке бюджетно доминировала реклама на телевидении. Сейчас больше 50% рынка — в интернете. Насколько ТВ-реклама эффективна сейчас и что с ней в итоге произойдет?

— Телевизионная реклама — великолепный и очень эффективный инструмент для больших потребительских компаний. Другое дело, что если ею управлять не на принципах 40-летней давности, то она может быть еще эффективнее. Наше население по-прежнему смотрит телевидение, оно будет продолжать его смотреть. Но то, как к людям будет приходить сигнал, и то, что они видят на своих экранах, — это точно будет меняться и прогрессировать. И этим будут управлять системы. Программатик-ТВ для нас — один из важнейших векторов развития.

Мы хотим, чтобы, например, смотря фильм Данилы Козловского «Тренер», вы видели в перерыве рекламу концерта в парке Горького, а ваша мама, сидящая в соседней комнате, — рекламу специй. Каждый — на своем телевизоре, получая совершенно одинаковую передачу и одинаковый сигнал.

— Вы уже заходите на рынок программатик-ТВ?

— Там много нюансов: нужно, чтобы сторона «железа» определенным образом развивалась. Все большие западные платформы уже активно это делают, потому что там более конкурентный, немонопольный рынок телевидения.

Задача — объединить ТВ и цифровую рекламу с точки зрения медиапланирования и закупок. На самом деле, зрителями обоих медиа являются одни и те же люди, просто в разные моменты. Задача таких платформ, как наша — все объединить и управлять рекламой на основе данных.



— Вы уже создали инструментарий для эффективных показов рекламы. Что дальше?

— Нам точно есть, куда развиваться, потому что каждый месяц система становится еще немного эффективнее. Есть гигантское количество идей — например, применить нейросети для предсказания. Дальше — есть разные каналы внутри цифровой рекламы. Мы говорим про баннеры и видео, а еще есть отправка e-mail, СМС, нативная реклама — все это также будет управляться нашей платформой. Система будет выбирать не просто кому показать и что показать, но еще и по какому каналу. Отправить вам два письма, одно СМС и показать баннер или показать четыре видеоролика и не тратиться на другие методы, потому что они вас раздражают?

Система сможет предсказывать последовательность для каждого пользователя и переучиваться на ходу. Если сейчас вы запускаете рекламную кампанию, а потом через месяц приходят отчеты, то в дальнейшем этот цикл будет происходить буквально в течение нескольких десятков минут. Уже сегодня наши модели перестраиваются каждые час или два. Человек делает это в сотню раз медленнее.

Дальше мы выйдем на поле того, чтобы показывать рекламу еще и на ТВ-канале. Параллельно автоматизируем не только то, как показывать, но и что показывать. Нейросети, которые создают изображения, тексты, персонализируются под каждого отдельного человека. Будущее совсем рядом, мы прямо сейчас тестируем эти системы.

Tags: интервью, реклама, технологии
Subscribe

Posts from This Journal “реклама” Tag

promo luckyea77 june 21, 2015 20:04 27
Buy for 10 tokens
В этой записи я буду давать ссылки на посты с лекциями и уроками в этом блоге: Учебные материалы и тесты: Дистанционное образование Правила дорожного движения 11 ресурсов для бесплатного образования Сайты для обучения программированию Игры, в которых нужно писать код: Grid Garden, Elevator…
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 0 comments