luckyea77 (luckyea77) wrote,
luckyea77
luckyea77

Неразумные создания: как обучают роботов



Источник

Вопреки страхам алармистов, роботы пока что не очень самостоятельны: эти неразумные создания нуждаются в человеке больше, чем кажется, потому что только человек может научить их правильно выполнять возложенные на них функции.

По данным вышедшего в сентябре 2018 года отчета McKinsey, внедрение промышленных роботов в 1990-х годах привело к повышению мирового ВВП на 0,4% в год; в том же отчете потенциальные выгоды от внедрения «умных машин» оцениваются еще выше — до 1,2% роста мирового ВВП от внедрения искусственного интеллекта (ИИ) на горизонте до 2030 года. Однако сегодня даже Amazon все еще использует для комплектации и упаковки товаров людей: простая на первый взгляд задача — взять предмет с параметрами, которые программе заранее неизвестны, — требует «творческого подхода». Для этого робот должен не только научиться видеть, то есть распознавать объекты, но и получить опыт взаимодействия с ними. Виртуальные среды — компьютерные игры-симуляторы для роботов — позволяют существенно ускорить и удешевить процесс машинного обучения и сократить время выхода новых моделей на рынок.

Массовая культура приучила нас воспринимать роботов как человекоподобные машины (андроиды). Это началось в 1921 году, когда Карел Чапек представил публике пьесу под названием «Р. У. Р.» («Россумские Универсальные Роботы»). Именно Чапеку мы обязаны самим словом «робот», которое сегодня может обозначать и станки с программным управлением, и автономный транспорт, и дроны, и умные дома.

Но еще раньше люди стали пугать друг друга сказками о машинах-убийцах, которые запросто могут пристрелить человека или как минимум отобрать у него возможность заработать на хлеб насущный. Английские луддиты еще в XIX веке безрезультатно пытались противостоять автоматизации процессов производства. Ничего не выходит и у неолуддитов. Сфера активно развивается там, где много «конвейерных» рабочих мест, то есть в азиатских странах. По данным IFR World Robotics, в 2018 году в Азию поставлялось 69,1% промышленных роботов, в Европу — 17,2%, а в Соединенные Штаты — 13,7%.

Вопреки распространенному заблуждению, роботы не только заменяют людей, но и создают дополнительные рабочие места. Без инженеров-эксплуатационников, специалистов по машинному обучению и контролеров эффективная работа автоматической сборочной линии невозможна. Финансовый аналитик из сингапурского DBS Bank Митчел Чан в интервью BitNewToday недавно сказал: «Конечно, люди периодически склонны думать, что они могут потерять рабочие места. Это верно, но вместо каждой устаревшей специальности создается другая специальность. Это вопрос переоценки наших собственных навыков и их применения в соответствии с неизбежной трансформацией».

Ценность робота зависит от того, насколько сложные операции он может выполнять и в какой степени независим от оператора. На автомобильную промышленность приходится 36% роботов, проданных в этом году, на электротехнику и электронику — самый быстрорастущий сегмент рынка на сегодня — 32%, а на производство металлов и металлообработку — 10%. Остальные были предназначены для пищевой промышленности, логистики и прочих отраслей. Итого годовой объем рынка промышленных роботов составляет $15 млрд.

Роботы, которые играют в игры

Машину, как и человека, нужно учить. Раньше это делали путем программирования конкретных действий, и этого было достаточно для «станков с программным управлением». Для автономного такси и даже для робота-упаковщика этого мало: слишком велико разнообразие сценариев, невозможно заранее запрограммировать все дорожные ситуации и все возможные положения всех возможных товаров. Да и производственные цепочки становятся сложнее.

Современный искусственный интеллект, способный к самообучению, существенно изменил подходы к программированию роботов. Настройка «интеллектуального софта» напоминает скорее процесс натаскивания школьников на тест: обучение происходит путем многократного проигрывания типовых сценариев.

Знаменитый американский психолог и психиатр Эрик Берн, автор книг «Люди, которые играют в игры» и «Игры, в которые играют люди», писал: «Родители считают ребенка достигшим зрелости, когда он ведет себя так, как они ему велят, а не так, как ему самому хочется». Педагога возмущает такой подход, но данная формулировка в полной мере соответствует чаяниям тех, кто занимается машинным обучением». Мы учим машину учиться, то есть получать и анализировать опыт. Лучше всего это делать в процессе игры, то есть «симуляции реальных действий». Берн — психолог, который очень много сделал для того, чтобы понятие «игра» вышло за пределы а) математического аппарата (теория игр) и б) бытового понимания (форма досуговой деятельности).

Качество человеческого образования зависит не только от личности учителя, но и от имеющихся в его распоряжении учебных пособий; так и «преподаватели для машин» нуждаются в специфических инструментах. Специалисты в области машинного обучения страдают от недостатка размеченных данных — массива информации, который позволяет искусственному интеллекту научиться правильно воспринимать и интерпретировать объекты. Обучающемуся алгоритму нужно «скормить» сотни тысяч, а иногда и миллионы размеченных объектов, чтобы научить его решать по-настоящему сложную задачу.

Изначально наиболее значимым направлением исследований в области робототехники было компьютерное зрение (computer vision). Этот раздел искусственного интеллекта должен дать роботам возможность видеть и понимать, что именно они видят. Это направление важно и для индустриальных роботов, и для беспилотных автомобилей, и для домашних роботов-помощников, и для индустрии безопасности (интеллектуальные системы наружного наблюдения, автоматический контроль периметров и т. п.), и, например, для маркетинга, чтобы ИИ мог в режиме реального времени фиксировать покупку и анализировать предпочтения клиентов в магазине.

Новый тренд робототехники — обучение с подкреплением (reinforcement learning), когда роботу дается возможность самому выбрать, какое действие совершить. Механическая рука может миллион раз попробовать ухватить объект, совершенствуя свои навыки, и на миллион первый раз у нее формируется «представление» о том, как это сделать правильно. Но с обучением в физическом мире возникает серьезная проблема: дефицит времени и специфические требования к полигону. Мы не можем позволить беспилотному автомобилю задавить миллион пешеходов, чтобы методом проб и ошибок он понял, что этого делать не стоит.

Поэтому роботов обучают с использованием синтетических данных, то есть на симуляторах, которые максимально похожи на реальность. Там беспилотные автомобили учатся ездить по виртуальным улицам, где можно давить сколько угодно пешеходов, как в компьютерной игре. Пусть пока потренируются в своем виртуальном мире.

Авторы: Сергей Николенко (Директор по науке Neuromation), Илья Стечкин (кандидат филологических наук, эксперт по внешней и внутренней коммуникации высокотехнологичных компаний, сооснователь TechComLab, специалист по inbound-маркетингу, исследователь информационно-коммуникационных технологий, участник сообщества OpenStack, резидент дискуссионной платформы «Новые медиа в гуманитарном образовании»).

Tags: робот
Subscribe

Posts from This Journal “робот” Tag

promo luckyea77 june 21, 2015 20:04 27
Buy for 10 tokens
В этой записи я буду давать ссылки на посты с лекциями и уроками в этом блоге: Учебные материалы и тесты: Дистанционное образование Правила дорожного движения 11 ресурсов для бесплатного образования Сайты для обучения программированию Игры, в которых нужно писать код: Grid Garden, Elevator…
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 0 comments