luckyea77 (luckyea77) wrote,
luckyea77
luckyea77

Categories:

Создан инструмент, который помогает устранить предвзятость компьютерного зрения



Исследователи из Принстонского университета разработали инструмент, который выявляет потенциальные предубеждения в наборах изображений, используемых для обучения систем искусственного интеллекта. Работа является частью более масштабного проекта по исправлению и предотвращению предубеждений, проникших в системы ИИ, которые влияют на все — от кредитных услуг до программ вынесения приговоров в зале суда.

Хотя источники предвзятости в системах ИИ разнообразны, одной из ее основных причин являются стереотипные изображения, содержащиеся в больших наборах данных, собранных из онлайн-источников, которые инженеры используют для развития компьютерного зрения. Это ветвь ИИ, которая позволяет компьютерам распознавать людей, объекты и действия. Поскольку фундамент компьютерного зрения строится на этих наборах данных, изображения, отражающие социальные стереотипы и предубеждения, могут непреднамеренно влиять на модели компьютерного зрения.

Чтобы помочь устранить эту проблему в ее первоисточнике, исследователи из Princeton Visual AI Lab разработали инструмент с открытым исходным кодом, который автоматически обнаруживает потенциальные искажения в наборах визуальных данных. Инструмент позволяет создателям наборов данных и пользователям исправлять проблемы недопредставленности или стереотипного изображения до того, как коллекции изображений будут использоваться для обучения моделей компьютерного зрения. В соответствующей работе члены Visual AI Lab опубликовали сравнение существующих методов предотвращения предвзятости в самих моделях компьютерного зрения и предложили новый, более эффективный подход к снижению предвзятости .

Первый инструмент, называемый REVISE, использует статистические методы для проверки набора данных на предмет потенциальных предубеждений или проблем недопредставленности по трем измерениям: объектному, гендерному и географическому.

REVISE оценивает содержимое набора данных, используя существующие аннотации к изображениям и такие измерения, как количество объектов, совместное присутствие объектов и людей, а также страны происхождения изображений. Среди этих измерений инструмент выявляет закономерности, которые отличаются от медианного распределения.


В одном наборе данных REVISE выявил потенциальную гендерную предвзятость в изображениях, на которых изображены люди (красные прямоугольники) и орган музыкального инструмента (синие прямоугольники). Анализ распределения предполагаемых трехмерных расстояний между человеком и органом показал, что мужчины, как правило, изображались как фактически играющие на инструменте, тогда как женщины часто просто находились в том же пространстве, что и инструмент. Предоставлено: Princeton Visual AI Lab.

Например, в одном из протестированных наборов данных REVISE показал, что изображения, включающие людей и цветы, различались у мужчин и женщин: мужчины чаще появлялись с цветами на церемониях или встречах, а женщины, как правило, появлялись в постановочных декорациях или картинах.

Как только инструмент выявляет такого рода несоответствия, «возникает вопрос, является ли это совершенно безобидным фактом или происходит нечто более важное, и это очень трудно автоматизировать», — объясняет Ольга Русаковская, доцент кафедры информатики и главный исследователь Visual AI Lab.

«Практика сбора наборов данных в компьютерных науках до недавнего времени не изучалась так тщательно», — заключает соавтор исследования Анджелина Ван, аспирантка в области компьютерных наук. Она объясняет, что изображения в основном «берутся из Интернета, и люди не всегда понимают, что их изображения используются [в наборах данных]. Мы должны собирать изображения от более разных групп людей и делаем это уважительно».

Tags: искусственный интеллект
Subscribe

Posts from This Journal “искусственный интеллект” Tag

promo luckyea77 june 19, 23:05 11
Buy for 10 tokens
Часть 1 Часть 2 Часть 3 Часть 4 Часть 5 Март 2018 года Индустриализация стала основным инструментом достижения экономического богатства стран, начиная с появления прядильных машин в конце XVIII века; при смене технологических укладов менялись местами мировые промышленные лидеры. Какой…
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 3 comments