luckyea77 (luckyea77) wrote,
luckyea77
luckyea77

Category:

Модель машинного обучения ускорит производство чистой энергии



Исследователи из ARC Center of Excellence in Exciton Science создали новый тип модели машинного обучения для прогнозирования эффективности преобразования энергии (PCE, power-conversion efficiency) материалов, которые могут использоваться в органических солнечных элементах следующего поколения, включая «виртуальные» соединения, которые еще не существуют.

В отличие от некоторых трудоемких и сложных моделей, новая модель является быстрым, простым в использовании методом поиска и анализа, а код доступен бесплатно для всех ученых и инженеров.

Ключом к разработке более эффективной и удобной для пользователя модели была замена сложных и дорогостоящих в вычислительном отношении параметров, требующих квантово-механических расчетов, на более простые и химически интерпретируемые дескрипторы сигнатур анализируемых молекул. Они предоставляют важные данные о наиболее значимых химических фрагментах в материалах, которые влияют на PCE, генерируя информацию. В дальнейшем ее можно использовать для разработки улучшенных материалов.

Новый подход может помочь значительно ускорить процесс разработки более эффективных солнечных элементов в то время, когда спрос на возобновляемые источники энергии и их важность для сокращения выбросов углерода как никогда высоки. Результаты были опубликованы в журнале Nature Computational Materials.

После десятилетий использования кремния, который является относительно дорогим и недостаточно гибким, все больше внимания уделяется органическим фотоэлектрических элементам (OPV, organic photovoltaics), которые дешевле производить, также они более универсальны и просты в утилизации.

Основная проблема заключается в сортировке огромного объема потенциально подходящих химических соединений, которые могут быть синтезированы (адаптированы учеными) для использования в OPV. Исследователи и раньше пытались использовать машинное обучение для решения этой проблемы. Однако многие из этих моделей отнимали много времени, требовали значительной вычислительной мощности компьютера и их было трудно воспроизвести. И, что особенно важно, они не давали достаточного руководства ученым-экспериментаторам, которые работали над новыми устройствами для зеленой энергетики.

Теперь работа, возглавляемая доктором Настараном Мефтахи и профессором Сальви Руссо из Университета RMIT, совместно с командой профессора Удо Баха из университета Монаш, успешно решила многие из этих проблем.

В большинстве других моделей используются электронные дескрипторы, которые сложны, требуют больших вычислительных ресурсов и не поддаются химической интерпретации. Это значит, что химик-экспериментатор или ученый не может черпать идеи из этих моделей для разработки и синтеза материалов в лаборатории. Сотрудничество ученых привело к созданию программы BioModeller, которая легла в основу новой модели с открытым исходным кодом. Используя ее, исследователи получили надежные и предсказуемые результаты и, среди прочего, определили количественные отношения между исследуемыми молекулярными сигнатурами и эффективностью будущих устройств OPV.

Tags: электроэнергия
Subscribe

Posts from This Journal “электроэнергия” Tag

Buy for 20 tokens
Да-да, речь про помощника Навального, который сейчас находится в изгнании. (фото-скрин: Канал Навальный LIVE) Тут прям серия настоящих шедевров, вскрывающая правду про реальное отношение к нашей стране. Благодарить за такое нужно наших пранкеров Вована и Лексуса, Владимира Кузнецова и…
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 3 comments