luckyea77 (luckyea77) wrote,
luckyea77
luckyea77

Categories:

Интервью с Джорджем Чёрчем – близок ли конец старения (2 часть)



Часть 1 Часть 2

Как быстро обнаружить и начать исправлять ещё неизвестные причины старения на генном уровне

Фэйи: Если старение обусловлено изменениями в экспрессии генов, и эти изменения могут быть обращены, то нам нужно как можно скорее найти все важные возрастные изменения экспрессии генов. Как это может быть сделано?

Чёрч: Результатом экспрессии генов в клетке является наличие специфических РНК и белков, и их можно изучить. Вы не обязаны выявлять каждую отдельную РНК в клетке, чтобы определить изменения в ней, но вы можете, и мы как раз разработали новый метод, который позволяет нам видеть все десятки тысяч РНК в одной клетке сразу, а также в соседних клетках. Итак, теперь мы можем видеть, как разные клетки взаимодействуют друг с другом. Этот новый метод, называемый флуоресцентным секвенированием in situ или FISSEQ, позволяет считать все РНК в клетке, одновременно подсчитывая все РНК в соседних клетках. Кроме того, мы получаем трёхмерные координаты для каждой молекулы РНК в каждой клетке.

Фэйи: Это невероятно. Как вы можете использовать этот метод для поиска изменений, связанных со старением?

Чёрч: Предположим, что существует два разных типа клеток, и мы хотим знать, экспрессия каких генов отличает их друг от друга. Мы можем сначала сравнить две клетки, используя FISSEQ, чтобы определить различия в экспрессии генов между ними. Затем мы можем выбрать конкретные различия, которые, по нашему мнению, приводят к тому, что клетки будут разными, и изменить экспрессию конкретных генов в любой из них или в обеих клетках, используя, например, CRISPR, и посмотреть, можем ли мы превратить один вид клетки в другой. Даже если у нас не получится в первый раз, мы можем сделать много предположений о том, какие РНК важны, и как нам их изменить, чтобы у нас всё получилось.

Тот же принцип может быть применён к любой паре клеток. Сравнивая старые клетки с молодыми, мы можем узнать, что делает старую клетку старой, и как превратить её в молодую.

Фэйи: Фантастика.

Чёрч: Одна из проблем в изучении развития и старения организма заключается в том, что это занимает много времени. Но если мы знаем эпигенетическое состояние всех этих разных клеток, то неважно, какая у них разница в возрасте, всего за несколько дней можно перепрограммировать клетку и воспроизвести эффекты десятилетий медленных изменений в теле или вообще обратить их. Поэтому в принципе мы могли бы превратить молодую клетку в старую или старую клетку в молодую, потому что единственная разница между ними – эпигенетика или экспрессия генов.

Фэйи: Какие ещё существуют способы определения важных генных мишеней, позволяющих вмешаться в процесс старения человека?

Чёрч: Есть четыре основных способа найти ключевые гены.

Во-первых, мы можем смотреть на гены, лежащие в основе индивидуальной изменчивости в таких вещах, как низкий риск вирусных инфекций, диабета, остеопороза и т. д. Самый экстремальный пример здесь – сравнить нормальных людей с супердолгожителями, с теми, кто живёт 110 лет и больше. В небольшой группе или даже в одном человеке можно найти уникальные полезные гены.

Существуют сотни генов, которые имеют небольшие эффекты, но затем на конце гауссовой кривой появляется что-то вроде двойного нулевого мутанта по миостатину или пере / недопроизводства человеческого гормона роста. Гены, которые обладают огромным влиянием и полностью перекрывают эффекты небольших экологических и генетических факторов – вот правильный тип гена, который нужно искать.

Второй способ найти генные мишени – взять их из фундаментальных исследований, таких как GDF11 и TFAM, о которых мы говорили ранее.

Третий способ – использовать специальную геномную стратегию, например, мутации тысяч генов один за другим, и смотреть, блокирует ли какая-либо из них старение, или используя метод FISSEQ, который мы обсуждали ранее.

Четвёртым способом определения генных мишеней является сравнение близкородственных видов, один из которых стареет гораздо медленнее другого (например, голые землекопы и крысы).

Независимо от того, где вы получаете свои результаты, вам не нужно беспокоиться о том, что у вас слишком много гипотез. Просто используйте CRISPR, чтобы активировать или ингибировать этот ген-кандидат и искать биомаркеры обращения старения, о которых мы говорили ранее. Идея состоит в том, чтобы увидеть, влияет ли ваше изменение или нет, и усиливает ли оно другие приёмы, успешно проверенные в прошлом.

Фэйи: Итак, если мы увидели что-то необычное в супердолгожителях, мы могли бы создать такое же изменение, например, в нормальной линии клеток человека и наблюдать, появился ли правильный шаблон долголетия.

Чёрч: Да.

Фэйи: Мне рассказал Джеймс Клемент, финансируемый Фондом Продления Жизни, что они делали совместную работу с вами по генетике супердолгожителей, вы могли бы даже взять их модели экспрессии генов, поместить их в мышей и посмотреть, будут ли мыши стареть медленнее.

Чёрч: Верно. Наш протокол, вероятно, будет собирать результаты из четырёх разных источников и сначала проверять их на человеческих клетках. Работая напрямую с человеческими клетками, мы не потратим много лет на мышей, что довольно дорого, лишь затем, чтобы узнать, что приём не работает на людях. Мы можем сделать более дешёвое и более актуальное исследование на клетках человека, подтвердить его на мышах, затем проверить на более крупных животных, а затем у людей. Я думаю, что переход от человеческих клеток к мышам и обратно к людям, скорее всего, спасёт нам время и деньги. Многие системы клеточного тестирования крови становятся все лучше и лучше, например «органы на чипе» или органоиды, которые становятся все более и более привлекательными в исследованиях in vivo.

Устранение проблем при вмешательстве в старение

Фэйи: Может ли высокая специфичность CRISPR устранить побочные эффекты некоторых антивозрастных вмешательств? Например, я работаю над регенерацией тимуса у людей и восстановлением производства Т-клеток с использованием гормона роста. Хотя гормон роста не вызывает рак у взрослых животных или людей, он замедляет репарацию ДНК у животных – эффект, не связанный с его полезным влиянием на регенерацию тимуса.

Чёрч: Таким образом, вы хотите избавиться от его влияния на репарацию ДНК, сохраняя при этом хорошие эффекты.

Фэйи: Да. Если можно использовать CRISPR, чтобы воздействовать прямо на гены, представляющие интерес, и не идти по обычным биохимическим путям, мы могли бы избежать нежелательных эффектов, правильно?

Чёрч: Именно. Вы можете составить список всех мишеней гормона роста и либо выбрать мишени, которые вам нужны, и активировать их выборочно, либо выбрать мишени, которые вам не нужны, и заблокировать их, чтобы вы могли использовать гормон роста, как обычно, но без ингибирования репарации ДНК.

Целесообразность применения CRISPR во взрослом организме

Фэйи: Чтобы обратить вспять процесс старения людей, технология CRISPR в конечном итоге должна применяться во всем теле, а не только в клетках в пробирке. Насколько целесообразно применять технологию CRISPR в живом организме?

Чёрч: Генная терапия может основываться на манипуляциях ex vivo, в которых клетки удаляются из организма, генетически модифицируются, а затем возвращаются в организм или на методах in vivo (внутри тела), в которых, например, модифицированный вирус может быть использован для переноса геной кассеты в разные клетки организма. У каждого из этих методов есть плюсы и минусы.

Существуют вирусные и невирусные системы, которые можно использовать для доставки конструкций CRISPR, они покинут кровеносные сосуды и попадут в ткани. Система доставки может содержать CRISPR, направляющую РНК и донорную ДНК, или в ней может быть CRISPR, направляющая РНК и белковый активатор, и так далее. Но независимо от того, является ли она вирусной или невирусной, общая масса конструкций для редактирования генов, которые нужно доставить, должна быть значительной. Но это не проблема, можно не спешить и доставлять их сериями.

К счастью, существуют дешёвые способы производства биологических препаратов. Цена древесины и даже продуктов питания и топлива, примерно в диапазоне доллара за килограмм. Если бы мы могли сделать килограмм вирусной системы доставки и загрузить её с помощью CRISPR, тогда она может стать достаточно недорогой, чтобы применить её к целому организму.

Фэйи: Да, килограмма бы хватило! Таким образом, вирусная система доставки содержит ген для CRISPR, отдельный ген для направляющей РНК и т. д. Когда он доставляет эти гены в клетку, она производит белки и нуклеиновые кислоты, и все компоненты просто сами собираются в ней, верно?

Чёрч: Да.

Фэйи: Какая система доставки CRISPR лучшая?

Чёрч: Адено-ассоциированные вирусы (AAV) в наше время являются одной из самых лучших систем доставки, потому что их можно нацелить на ткани, отличные от печени (где многие иные системы доставки заканчивают свой путь). Это активная область исследований. Она бурно развивается, и революция CRISPR сделала её ещё более привлекательной.

Безопасность

Фэйи: Насколько специфичным может быть спроектирован вирус для доставки CRISPR только в один вид клеток организма?

Чёрч: На каждую тысячу клеток определённого типа, обычно приходится одна неверная доставка в клетку другого типа, которая не была мишенью. Это вполне неплохо. Кроме того, если у вас есть что-то, нужное для всех клеток, оно должно быть доставлено во все клетки. Даже если у вас есть что-то специфическое, обычно не имеет значение, в какие клетки оно доставляется. Но в тех случаях, когда это важно, вы можете получить правильную доставку около 999 раз из 1000.

Фэйи: Могут ли быть проблемы с одной неверной доставкой из 1000? В целом это все равно вышло бы немало ошибок.

Чёрч: Нужно помнить, что большинство лекарств фактически попадают во все клетки вашего тела. Было бы излишним сказать, что CRISPR должен быть более специфичным, чем любой предыдущий препарат.

Безопасность также зависит от того, с какой маркой «взрывчатых веществ» вы имеете дело. Как нитроглицерин или тротил. Если вы сделаете безопасность одним из своих главных приоритетов, вы не будете использовать приём, если он может работать неправильно, пока не будете уверены в очень высокой клеточной специфичности.

Фэйи: Ещё очень важно для безопасного использования CRISPR – это не только то, в какую клетку она попала, но и редактирует ли она правильный ген. Насколько точно можно нацелить CRISPR в геноме?

Чёрч: На практике, когда мы представили наш первый CRISPR в 2013 году, его уровень ошибок был около 5%. Иными словами, CRISPR неправильно отредактировал бы 5 клеток из 100. Теперь мы получаем примерно одну ошибку на 6 триллионов клеток.

Фэйи: Это означает, что вероятность серьёзной ошибки теперь настолько низка, что её очень сложно измерить, она намного меньше, чем скорость спонтанных мутаций.

Чёрч: Да. И помимо этого можно использовать небольшие молекулы в качестве условных активаторов, чтобы гарантировать, что предполагаемые изменения происходят лишь в нужных клетках. Сочетание полностью безопасного активатора малых молекул и программируемого нацеливания является беспрецедентным.

Другие проверки также могут быть введены для ещё большей безопасности. Например, когда вирус попадает внутрь клетки, он может принимать дальнейшие решения. Он может по существу спросить: «Я в нужном месте?» – прежде чем действовать. Существует целая область молекулярных логических схем, которые могут применяться во избежание ошибок.

Доступность

Фэйи: Будет ли доступным по цене обращение старения с помощью такого подхода?

Чёрч: Если вы посмотрите на текущую цену, она выглядит огромной и недоступной. В клинических испытаниях участвует около 2000 генных терапий, но единственная из них, одобренная для использования, стоит более одного миллиона долларов за дозу. Вам нужна всего одна доза, но по этой цене она явно недоступна для большинства людей. Насколько мне известно, это самое дорогое лекарство в истории.

Фэйи: Что это за лекарство?

Чёрч: Оно называется Glybera. Оно лечит панкреатит, редкое генетическое заболевание. Но первое секвенирование генома человека обошлось в 3 миллиарда долларов на геном, а теперь его цена всего 1000 долларов, поэтому я думаю, что снижение цены с одного миллиона до тысяч не будет проблемным.

Фэйи: Ещё одна экономия затрат на вмешательство в процесс старения возникла бы, если бы мы могли значительно замедлить старение, просто изменив 5-10 генов. Это могло бы привести к тому, что общая стоимость снизится до приемлемой.

Чёрч: Верно. Комбинация, нужная чтобы изменить, скажем, триллион клеток во всем теле и 10 000 генов, была бы сложной. Но если вы могли бы изменить лишь часть клеток и генов, то сделали бы её доступнее.

Фэйи: Вы сказали, что терапия CRISPR обладает потенциалом для замены обычных лекарств. Почему?

Чёрч: Большое преимущество CRISPR в том, что он намного лучше, чем обычные процедуры, у него прекрасные возможности по «размещению кнопок управления» там, где в настоящее время нет никаких кнопок. Сейчас вам нужно быть очень везучим, чтобы получить хороший препарат, который будет делать ровно то, что вы хотите, и ничего кроме. С CRISPR мы можем быть намного более точными.

Как много можно исправить за один раз?

Фэйи: Если мы знаем, что делать, и мы можем позволить себе это сделать, как быстро мы можем обратить старение? Как насчёт одновременной модификации, скажем, 10 разных типов клеток в организме, которые вызывают большинство старческих изменений? Могут ли они все быть изменены одновременно?

Чёрч: «Все» – большое слово, но я думаю, что многое может быть изменено сразу. Это можно осуществить с помощью того, что мы называем мультиплексированием, используя смесь вирусов или векторов для доставки, позволяющую сделать много изменений за раз. Но вы можете пойти и медленным путём, начиная с самых приоритетных тканей, а затем перейти к менее приоритетным. Определение того, какие ткани являются высшим приоритетом, может варьироваться в зависимости от наследственности пациента, возможно, что конкретная ткань будет подвергаться более высокому риску старения.

Дорога в клиники: сколько времени это займёт?

Фэйи: Используя ваш самый лучший метод, сколько времени потребуется, чтобы испытание на человеке было возможно?

Чёрч: Я думаю, что это может произойти очень быстро. Возможно, понадобятся годы, чтобы получить полное разрешение на применение, но может потребоваться всего лишь год, чтобы получить разрешение на испытания первой фазы. Испытания GDF11, миостатина и прочих уже велись на животных, как и большое количество исследований CRISPR. Я думаю, что через год или два мы увидим первые испытания на человеке.

Фэйи: Можете ли вы сказать, какими могут быть эти испытания?

Чёрч: Я помог создать компанию под названием Editas, которая занимается методами лечения генома, основанными на CRISPR. Одни из них направлены на редкие детские заболевания, а другие, надеюсь, будут направлены на старение. У нас также есть компания, специализирующаяся на обращении старения, которая будет тестировать эти методы лечения на животных и человеке.

Лечение старения, FDA и модель пищевых добавок

Фэйи: Является ли проблемой тот факт, что FDA не признает старение болезнью?

Чёрч: FDA занимается многими симптомами старения, такими как остеопороз, мышечная дистрофия, сердечные заболевания, когнитивная дисфункция и т. д. Как правило, сложнее доказать превентивный подход, чем эффективность лекарства, которое лечит быстрое и очень опасное заболевание. И поскольку FDA не хочет, чтобы вы делали любые необоснованные заявления о своём здоровье, они должны были взять на себя ответственность за регулирование любого связанного со здоровьем состояния, о котором можно было бы заявить. На самом деле старение не обязано официально быть болезнью.

Фэйи: Было предложено, чтобы FDA просто оценивало безопасность, а не эффективность. Как вы к этому относитесь?

Чёрч: Мне это очень нравится. Интернет, вероятно, избавит нас от неэффективных лекарств. Рынок пищевых добавок – прекрасный пример того, что безопасность – всё, что необходимо для разрешения. Вы можете поставлять пищевую добавку на рынок лишь на основе её безопасности, но вы не можете поставлять рецептурный препарат лишь на основе его безопасности. Должно быть общее правило.

Фэйи: Свобода инноваций и создание пищевых добавок – вот что такое Фонд продления жизни. Они финансируют все мои исследования в области криобиологии, и их пищевые добавки основаны на научных исследованиях. Хорошие следствия свободы и свободной работы.

Чёрч: Это правда. Я просто говорю, что в FDA существует двойной стандарт. Стандарты на пищевые добавки отличаются от стандартов на новые лекарства, отпускаемые по рецепту.

Фэйи: Возможно, если бы это было изменено в пользу стандартов на добавки, у нас было бы гораздо больше лекарств, и всё было бы намного лучше.

Чёрч: Да. Фокусирование внимания на безопасности, вероятно, является правильной моделью.

Фэйи: Спасибо, доктор, за удивительный экскурс в ближайшее будущее!

Об авторах


George M. Church, PhD – американский генетик, молекулярный инженер и химик. Профессор Гарвардской Медицинской Школы и профессор наук о здоровье в Гарварде и МТИ. Основал Wyss Institute for Biologically Inspired Engineering и 9 биоинженерных компаний.

Gregory M. Fahy, PhD – криобиолог и биогеролог, вице-президент и главный научный сотрудник в Twenty-First Century Medicine, Inc. Лучший в мире эксперт по криопрезервации и витрификации органов.

Часть 1 Часть 2

Tags: интервью, старение
Subscribe

Posts from This Journal “интервью” Tag

promo luckyea77 декабрь 30, 15:00 8
Buy for 10 tokens
По этой ссылке можно скачать информационную базу для программы "1С:Предприятие". С помощью данной базы можно готовиться и сдавать экзамены по темам: - Электробезопасность - Основы промышленной безопасности А.1 - Специальные требования промышленной безопасности: Б 9.31. Эксплуатация опасных…
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 2 comments